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Origin and properties of magnetic field
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Order of magnitude estimate:

For Z=79, b=7 fm, γ=100 we get eB = (200 MeV)2 ≈ mπ2

A better estimate: take Lienard-Wiechert potentials, integrate over the charge 
distribution in nuclei.  
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Fig. A.2. Magnetic field at the center of a gold-gold collision, for different impact
parameters. Here the center of mass energy is 200 GeV per nucleon pair (Y0 = 5.4).

we will consider the spectators, then we will discuss an approximation for the
participants. We will perform both approximations at the origin (x⊥ = 0
and η = 0). In that case the magnetic field is pointing in the y-direction,
eB = eBey. Especially for large impact parameters the magnetic field at
the origin will be a good estimate for the magnetic field at the surface of the
interacting region, since the magnetic field in the overlap region is to a good
degree homogeneous in the transverse plane.

A.1 Spectator Contribution for τ ! R/ sinh(Y0)

For τ ! R sinh(Y0) the denominator of the integrand of the spectator contri-
bution Eq. (A.6) can be approximated by τ 3 sinh(Y0)3. Hence we find

eBs ≈ ZαEM exp(−2Y0)
4R

τ 3
g(b/R), (A.9)

where
g(b/R) =

∑

±

g±(b/R), (A.10)

with

g±(b/R) = ∓
1

R

∫

d2x′
⊥ρ±(x′

⊥)(1 − θ∓(x′
⊥))x′. (A.11)

We find that to very good approximation g±(b/R) = b/R. As a result

eBs ≈ ZαEM exp(−2Y0)
4b

τ 3
. (A.12)

27

Kharzeev, McLerran, Warringa (2007)
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Hadron String Dynamic transport code: Voronyuk, Toneev, Cassing, Bratkovskaya, Konchakovski, Voloshin  (2011)

UrQMD based calculation: Skokov, Illarionov, Toneev (2009)

Similar results:



r⇥E = �Ḃ
r⇥B = j = �E

Lenz’s law: induced B is parallel to the original B. 

Conductivity: Aarts at al (2007), Ding at al (2010): 
only gluon contribution!

h

R L~R>>h

L

B time-dependence is characterized by the scale 

for R=5 fm ⇒ τ≈1-2 fm/c ≫R/γ
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LIFETIME: MEDIUM EFFECTS
Medium is formed at a very early stage after a Heavy Ion Collision: Glasma (t~0.2 fm) gives way 
to Quark Gluon Plasma (t~0.5 fm) according to the state-of-the-art phenomenology.  



LIFE TIME: BACK-REACTION ?

Once E-field is induced by time-decreasing B, it starts generating electron-positron pairs via 
the Schwinger mechanism.

Cooper, Eisenberg, Kluger, 
Mottola, Svetitsky (1992)
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FIG. 2. (Continued).
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FIG. 3. Proper-time evolution of the system
of (a) electric field E(~) and (b) fermion
current j„(~)for initial conditions at ~= 1 with
initial electric field E(~= 1)=4.0.
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similar results by Tanji (2009)

Cooper at al argued that E(t) is adiabatic with relaxation time ~1/me=400 fm

n ⇠ E2

me
=

m4
⇡

e2me
⇠ 106 fm�3Number density of electrons
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However, this mechanism doesn’t seem realistic since the electron Compton wavelength is 
~ 20 times larger than the QGP size.



APPLICATIONS

✴ Synchrotron radiation

✴ Photon/dilepton production

✴ Azimuthal anisotropy of QGP

✴ Ionization of bound states (e.g. J/ψ)

✴ Chiral Magnetic Effect

✴ QCD phase diagram

KT (2010,2012)

KT (2010)

Mohaparta, Saumia, 
Srivastava (2011), KT (2011)

Marasinghe, KT (2011)

Kharzeev (2006), Kharzeev, Zhitnitsky (2007), 
Kharzeev, McLerran, Warringa (2008), ...
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Quarkonium dissociation
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QUARKONIUM IN MAGNETIC FIELD

✴ Lorentz ionization: in the quarkonium rest frame there are 
perpendicular electric and magnetic fields. Electric field renders 
quarkonium unstable with respect to decay into q and anti-q. 

✴ Zeeman effect. Quarkonium state of total angular momentum J 
splits (in weak field) into states of different mass: ΔM= (eB/2m)gJz, 
where Jz=-J, -J+1,...,J. For example J/ψ (S=1,L=0, J=1) Jz=0,±1 ⇒ 
ΔM=0.15 GeV (at LHC)

✴ Distortion of the quarkonium potential due to high order 
effects. This is important B~3πm2/e which is 3π/α stronger than the 
Schwinger’s field. Machet, Vysotsky (2010)
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J/Ψ IN MAGNETIC FIELD
Marasinghe, KT (2011)

"bbinding energy ↵s/"bquarkonium radius

Quasi-static approximation is justified if the field does not change much over 
the quarkonium radius. For J/ψ:

i.e. B varies over scales much larger than the charmonium radius.

Inhomogeneity of space distribution of B is ~ 1/mN >>αs/εb

B ≈ const

Parameters: and

"b⌧/↵s ⇡ 10

Thanks to the small size of J/ψ we can confidently set

(Note: as T→Tc this approximation breaks down because J/ψ becomes “fatter”)
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BOOST FROM LAB TO J/Ψ REST FRAME
5

components parallel and perpendicular to V correspondingly. Then,

Ek = 0 , E? = �
L

V ⇥B0 , (3a)

Bk =
B0 · V

V
, B? = �

L

(V ⇥B0)⇥ V

V 2
, (3b)

where �
L

= (1 � V 2)�1/2. Clearly, in the comoving frame B · E = 0. If quarkonium travels at

angle � with respect to the magnetic field in the laboratory frame, then

B = B0

q
cos2 �(1� �2

L

) + �2
L

, E = B0�
L

V sin � . (4)

We choose z and y axes of the comoving frame such that B = Bẑ and E = Eŷ. A convenient gauge

choice is A = �By x̂ and ' = �Ey. For a future reference we also define a useful dimensionless

parameter ⇢ [43]

⇢ =
E

B
=

�
L

V sin �q
cos2 �(1� �2

L

) + �2
L

. (5)

Note, that (i) 0  ⇢  1 because B2 �E2 = B2
0 � 0 and (ii) when quarkonium moves perpendicu-

larly to the magnetic field B0, ⇢ = V .

B. WKB method

It is natural to study quarkonium ionization in the comoving frame. As explained in the

Introduction, ionization is quantum tunneling through the potential barrier caused by the electric

field E. In this subsection we employ the quasi-classical, a.k.a. WKB, approximation to calculate

the quarkonium decay probability w. For the gauge choice specified in Sec. II A quark energy "0

("0 < m) in electromagnetic field can be written as

"0 =
p

m2 + (p� eA)2 + e' =
q

m2 + (p
x

+ eBy)2 + p2
y

+ p2
z

� eEy . (6)

In terms of "0, quarkonium binding energy is "
b

= m�"0. To simplify notations, we will set p
z

= 0,

because the quark moves constant momentum along the direction of magnetic field.

The e↵ective potential U(y) = "0(y)�
p

m2 + p

2 corresponding to (6) is plotted in Fig. 1. We

can see that the tunneling probability is finite only if E > 0. It is largest when B = 0. It has

been already noted before in [41, 43, 44] that the e↵ect of the magnetic field is to stabilize the

bound state. In spite of the linearly rising potential (at B > E) tunneling probability is finite as

the result of rearrangement of the QED vacuum in electric field.
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choice is A = �By x̂ and ' = �Ey. For a future reference we also define a useful dimensionless

parameter ⇢ [43]

⇢ =
E

B
=

�
L

V sin �q
cos2 �(1� �2

L

) + �2
L

. (5)

Note, that (i) 0  ⇢  1 because B2 �E2 = B2
0 � 0 and (ii) when quarkonium moves perpendicu-

larly to the magnetic field B0, ⇢ = V .

B. WKB method

It is natural to study quarkonium ionization in the comoving frame. As explained in the

Introduction, ionization is quantum tunneling through the potential barrier caused by the electric

field E. In this subsection we employ the quasi-classical, a.k.a. WKB, approximation to calculate

the quarkonium decay probability w. For the gauge choice specified in Sec. II A quark energy "0

("0 < m) in electromagnetic field can be written as

"0 =
p

m2 + (p� eA)2 + e' =
q

m2 + (p
x

+ eBy)2 + p2
y

+ p2
z

� eEy . (6)

In terms of "0, quarkonium binding energy is "
b

= m�"0. To simplify notations, we will set p
z

= 0,

because the quark moves constant momentum along the direction of magnetic field.

The e↵ective potential U(y) = "0(y)�
p

m2 + p

2 corresponding to (6) is plotted in Fig. 1. We

can see that the tunneling probability is finite only if E > 0. It is largest when B = 0. It has

been already noted before in [41, 43, 44] that the e↵ect of the magnetic field is to stabilize the

bound state. In spite of the linearly rising potential (at B > E) tunneling probability is finite as

the result of rearrangement of the QED vacuum in electric field.

5

components parallel and perpendicular to V correspondingly. Then,

Ek = 0 , E? = �
L

V ⇥B0 , (3a)

Bk =
B0 · V

V
, B? = �

L

(V ⇥B0)⇥ V

V 2
, (3b)

where �
L

= (1 � V 2)�1/2. Clearly, in the comoving frame B · E = 0. If quarkonium travels at

angle � with respect to the magnetic field in the laboratory frame, then

B = B0

q
cos2 �(1� �2

L

) + �2
L

, E = B0�
L

V sin � . (4)

We choose z and y axes of the comoving frame such that B = Bẑ and E = Eŷ. A convenient gauge
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✴ 0≤ρ≤1

✴ For V⊥B0 : ρ=V

B0
V

𝜙
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J/ψ

B

E

Lab frame (CoM of 
heavy-ion collision) 

J/ψ rest frame



IONIZATION MECHANISM

-eEy=|e|Ey

εb
|e|Ey+εkin

There is finite quantum 
probability for the anti-quark 
(e<0) to tunnel through the 
potential barrier and go to 
y→-∞. y

This is J/ψ+E → D+D- decay.

Quarkonium rest frame

Lab frame
J/ψ

B

c̄

c

12

Magnetic field supplies momentum,
while moving quarkonium supplies energy. 



J/Ψ REST FRAME: ROLE OF B

E=0

E=Bê2
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FIG. 1: E↵ective potential U(y) =
q

m2 + (p
x

+ eBy)2 + p2
y

� eEy�
q

m2 + p2
x

+ p2
y

for p
y

= 0, p
x

= m/6,

B = m (except the blue line where B = 0). The width of the potential barrier decreases with E and

increases with B. 1� ✏0 corresponds to the binding energy in units of m.

Ionization probability of quarkonium equals its tunneling probability through the potential

barrier. The later is given by the transmission coe�cient

w = e�2
R y1
0

p
�p

2
ydy ⌘ e�f . (7)

In the non-relativistic approximation one can also calculate the pre-exponential factor, which ap-

pears due to the deviation of the quark wave function from the quasi-classical approximation. Such

a calculation requires matching quark wave functions inside and outside the barrier [45]. To deter-

mine the pre-exponential factor in the relativistic case one needs to solve the relativistic two-body

problem, which is analytically challenging [46]. Fortunately, as we argue later, one does not need

to know the pre-factor to make reliable estimates of the quarkonium dissociation energy.

We now proceed with the calculation of function f . Since B > E Eq. (6) can be written as

p2
y

= �e2(B2 � E2)(y � y1)(y � y2) , (8)

where

y1,2 =
"0E � p

x

B ⌥
p

("0E � p
x

B)2 � (B2 � E2)(�"2
0 + m2 + p2

x

)
e(B2 � E2)

. (9)

Define dimensionless variables ✏0 = "0/m and q = p
x

/m. Integration in (7) gives:

f

m2
=

p
�✏20 + 1 + q2(✏0E � qB)

e(B2 � E2)

� (✏0E � qB)2 � (B2 � E2)(�✏20 + 1 + q2)
e(B2 � E2)3/2

ln

(
✏0E � qB +

p
(B2 � E2)(�✏20 + 1 + q2)p

(✏0E � qB)2 � (B2 � E2)(✏20 + 1 + q2)

)
.

(10)

"0 =
p

m2 + (p� eA)2 + e' =
q

m2 + (p
x

+ eBy)2 + p2
y

+ p2
z

� eEy
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In the rest frame decay happens only due to electric field (magnetic field does no work). 
What is the role of magnetic field? 



DETAILS OF THE WKB CALCULATION 

Transmission coefficient

(Radius of quarkonium R∝αs)

w = e�2
R y1
0

p
�p2

ydy ⌘ e�f where y1 is the turning point.

p2
y = �e2(B2 � E2)(y � y1)(y � y2)

“0”th approximation: if (Mεb)1/2R ≪ 1, we can treat the potential as a short-range one.

14

Transmission coefficient depends on transverse momentum q=px/m. In the saddle-
point approximation only contribution at q=qm contributes such that 

@f(qm)
@qm

= 0

fm =
m2⌧0⇢

eE
p

1� ⇢2
[1� ✏0(✏0 � qm⇢)]

The leading exponent:

Popov, Karnakov, Mur (1998)
Marasinghe, Tuchin (2011)

τ is a certain known function of ρ and qm



NON-RELATIVISTIC APPROXIMATION
• If quark’s momentum is small p≪m, then ε0≈m or εb=m-ε0≪m Also v~E/B = ρ≪1

• Expanding in ρ and εb/m we get 

where � =
p

2✏b

⇢
is the adiabaticity parameter

Keldysh function

Keldysh (1965)
fm =

2m2(2✏b)3/2

3eE
g(�)

g(�) =
3⌧0

2�

"
1� 1

�

✓
⌧2
0

�2
� 1

◆1/2
#

 If γ<<1 the field can be considered as adiabatic (slowly varying)

Weak binding: εb≪ρ2 ⇒ γ≪1 w = exp

(
�2

3

(2"bm)

3/2

meE

)
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NR APPROXIMATION: SPIN

Spin contribution can be calculated from Dirac equation
⇥
("� e')2 � (p� eA)2 �m2 + e⌃ · B� ie↵ · E

⇤
 = 0

Problem: Σz and αy do not commute ⇒ need to square the above equation to apply WKB

• Much easier in non-relativistic approximation:

1
2m

⇥
(p

x

+ eBy)2 + p2
y

⇤
� eEy � µ

s
s · B = �"

b

p2
y

= 2m
⇣
�"

b

+
µ

s
s · B + eEy

⌘
� (p

x

+ eBy)2

µ =
e~

2mc

Simple replacement takes spin into account "b ! "0
b = "b �

µ

s
s · B

16

How good is non-relativistic approximation?
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depend on the magnetic field in the lab frame B0 and quarkinium kinematics through the Lorentz

transformation formulas (4). In Fig. 3 we show function f
m

(✏
b

) for di↵erent velocities V of J/ ,

assuming it moves perpendicularly to the magnetic field. In vacuum, M = 3.1 GeV, m = 1.87 GeV,

so that "
b

= 2m �M = 0.64 GeV. The corresponding dimensionless parameter ✏
b

varies in the

interval 0  ✏
b

 0.68.

eB0=15mp2

f=pê2 V=0.2 V=0.5 V=0.7

V=0.9

V=0.95
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eb
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FIG. 3: f
m

versus ✏
b

for di↵erent values of J/ velocity V . Dissociation probability is w = exp{�f
m

}.

Magnetic field in the lab frame is taken to be eB0 = 15m2
⇡

. J/ moves perpendicularly to the field (i.e.

in the reaction plane). Solid lines correspond to the full relativistic calculation, dashed lines to the non-

relativistic approximation. J/ binding energy in vacuum corresponds to ✏
b

= 0.68.

The numerical solution to Eq. (37) is plotted in Fig. 4. We see that the dissociation energy of

J/ increases with its velocity and is larger in a strong magnetic field. At eB0 = 15m2
⇡

, which

according to estimates may be reached in heavy-ion collisions at the LHC [30, 31], the dissociation

energy equals the vacuum binding energy at V = 0.94. This implies that most of J/ ’s moving in

the reaction plane with P? > 9 GeV will dissociate in magnetic field even in vacuum.

In a thermal medium, "
b

exhibits strong dependence on temperature T . At T = 0, "
b

equals its

vacuum value. As T increases "
b

drops until it vanishes at some T0 near T
c

. The precise value of

T0 as well as the functional form of "
b

(T ) is model dependent, see e.g. [18, 19]. To illustrate the

temperature e↵ect, we indicated in Fig. 4 half of the J/ binding energy "
b

/2 and its quarter "
b

/4.

Suppose that plasma temperature is such that the binding energy is half of that in vacuum. Then,

at eB0 = 15m2
⇡

, all J/ ’s with V > 0.71 (P? > 3.1 GeV) will dissociate, while at eB0 = 7m2
⇡

this

occurs at V > 0.92 (P? > 7.3 GeV).

So far in this section we have discussed the case of quarkonium moving in the reaction plane,

NR APPROXIMATION IS VERY GOOD!
In NR approximation we 
can take into account the 
finite width of the 
quarkonium wave function 
and the Coulomb 
interaction between the q 
and anti-q

T=0T=Tc

w = e�fm

17



CHIRAL-MAGNETIC EFFECT

If metastable P and CP-odd bubbles are induced by axial anomaly in hot nuclear matter, then
in the presence of external magnetic field B0 the bubble generates an electric field E0 which is 
parallel to the magnetic one.  

E0 = �Nc

X

f

e2
f

4⇡2

⇥
Nf

B0 = �2
3

↵ ⇥
⇡

B0

Θ fluctuates from event to event. CME is a macroscopic manifestation of this effect - separation of 
electric charges with respect to the reaction plane. 

In the presence of finite E0 decay rate of quarkonia increases. What is the value of Θ which can 
have an observable effect on J/ψ dissociation?

18



J/ψ rest frame: E, B

⇢0 = E0/B0 = 2↵|⇥|/3⇡

cos ✓ =

E · B

EB
=

1q
[1 + �2

L(b0 ⇥ V )

2
(1 + ⇢�2

0 )][1 + �2
L(b0 ⇥ V )

2
(1 + ⇢2

0)]

B

V

𝜙E θ

E =E0

⇢
�L(b0 + ⇢�1

0 V ⇥ b0)� (�L � 1)V
V · b0

V 2

�

B =B0

⇢
�L(b0 � ⇢0V ⇥ b0)� (�L � 1)V

V · b0

V 2

�

Lab frame: E0 , B0

19

BOOST FROM LAB TO QUARKOINUM REST FRAME II



DISSOCIATION RATE

w =
8"b

✏
P (�, ✓)C2(�, ✓) e�

2
3✏ g(�,✓)

where the leading quasi-classical exponent is

g =

3⌧0

2�

"
1� 1

�

✓
⌧2
0

�2
� 1

◆1/2

sin ✓ � ⌧2
0

3�2
cos

2 ✓

#

• P is a prefactor for the S-wave state of quarkonium accounting for a deviation from 
the quasi-classics.

• C accounts for the Coulomb interaction between the valence quark and anti-quark. 
Explicit expression for P and C in 
NR approximation was derived by 

Popov, Karnakov, Mur (1998)
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AVERAGING

• We assumed that the dissociation process happens entirely inside a bubble and that 
Θ=const inside the bubble. However, many bubbles are produced in a single heavy-ion 
collision, such that <Θ>=0. Can we neglect other bubbles?

• Bubble size R0 ~ sphaleron size ~ chromo-magnetic screening length ~ 1/g2T 

Quarkonium size RJ ~ αs/εb ⇒ RJ/R0 ~ αs2 T/εb ≪1 

provided that T is not too high and not too close to Tc

• The rate w depends on |ρ0|2 and is not sensitive to the sign of E0 and Θ. Thus after 
averaging w(Θ) over all events with some distribution of Θ’s will get w(Θeff). 
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 This is about an order of magnitude larger 
than Θ required to explain CME.

• There is a significant (measurable) effect of 
CP-odd bubbles only if E0>0.1 B0 ⇒

|Θ|/π~0.1/α 7
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FIG. 1: Dissociation rate of J/ at eB0 = 15m

2
⇡, � = ⇡/2 (in the reaction plane), ⌘ = 0 (midrapidity) as a

function of (a) P? at "b = 0.16 GeV and (b) "b at P? = 1 GeV.

w ⇠ 0.3�0.5 fm�1 corresponds to complete destruction of J/ ’s. This means that in the magnetic

field of strength eB0 ⇠ 15m

2
⇡ all J/ ’s with P? & 0.5 GeV are destroyed independently of the

strength of E0. This P? is lower than we estimated previously in [16] neglecting the pre-factors

in the dissociation rate. Since magnetic field strength decreases towards the QGP periphery, most

of J/ surviving at later times originate from that region. E↵ect of the electric field E0 of the

parity-odd bubble is strongest at low P?, which is consistent with our discussion in the previous

section. The dissociation rate at low P? exponentially decreases with decrease of E0. Probability

of quarkonium ionization by the fields below E0 . 0.1B0 (i.e. ⇢0 . 0.1) is exponentially small.

This is an order of magnitude higher than the estimate ⇢0 ⇠ ↵ proposed in [5].

As the plasma temperature varies, so is the binding energy of quarkonium although the precise

form of the function "b(T ) is model-dependent. The dissociation rate picks at some "0b < "

vac
b (see

Fig. 1(b)), where "vac
b is the binding energy in vacuum, indicating that J/ breaks down even

before "b drops to zero, which is the case at B0 = 0. This "0b is a strong function of E0 as can be

seen in Fig. 2. It satisfies the equation @w/@"b = 0. In the case � ⌧ 1 (10) and (12) imply that

"

0
b =

m

2

✓
5eE

2m

2

◆2/3

, � ⌧ 1 (14)

At � � 1 and ✓ = ⇡/2 we employ (9) to derive the condition ("0b)
2 + eB"

0
b/2m � eE

2
/B = 0. In

view of (11) E ⇡ B and we obtain

"

0
b =

eB

4m

 r
16m

2

eB

+ 1� 1

!
⇡
p

eB , � � 1 (15)

where in the last step we used that eB ⌧ m

2. For a given function "b(T ) one can convert "0b into

the dissociation temperature, which is an important phenomenological parameter.

• J/ψ’s with pT>0.5 GeV are not stable
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AZIMUTHAL ASYMMETRY
Spectrum of quarkonia surviving in EM field is proportional to survival probability P=1-wt

Let 𝜒=𝜋/2-𝜑 be the angle between the quarkonium velocity and the reaction plane

P (�) =

1

2

P0 +

1X

n=1

Pn cos(n�) , Pn =

1

⇡

Z ⇡

�⇡
P (�) cos(n�) d�

Ellipticity of the distribution v2 =

P2
1
2P0

=

R ⇡
�⇡(1 � wt) cos 2� d�

⇡ hP i = � t

⇡ hP i

Z ⇡

�⇡
w cos 2� d�

E0=0.2B0, p¶=2.5

E0=0.2B0, p¶=1

E0=0, p¶=1

Reaction plane

B0

-2 -1 1 2
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v 2
<
P>
êt
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AZIMUTHAL ASYMMETRY

Experimental result for v2 of J/ψ is consistent with zero. Possible reasons:

1.Magnetic field is significantly weaker and short-lived than we assumed, which however 
contradicts observations of the CME.

2. Almost none of J/ψ’s produced in the center of QGP survive. Rather they originate from the 
peripheral regions. 

24
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CONCLUSIONS I

Magnetic field destroys J/ψ’s. This effect grows 
with pT and strongly depends on azimuthal angle.



CHIRAL MAGNETIC EFFECT FROM QED+ ?

No physical principle prohibits appearance of “irrelevant” terms in the QED lagrangian. E.g.:  

LQED+ =
1

M4
(FF̃ )F 2

This term disappears in weak fields and/or long distances, but can be large if F~M, where M 
comes from some exotic small-distance physics. 

This term would produce the CME even at θ=0

High intensity fields is an opportunity to search for a new physics.

26

What if no strong QED effect is observed, but the Chiral Magnetic Effect survives??



Synchrotron radiation

27

-source of photons (shinning of QGP in magnetic field)

-contributes to quark energy loss
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f(ef , j, p)! f(ef , k, q) + �(k)

γ

f

Fermion spectrum quantization is important not only for hard and 
electromagnetic probes but also for the bulk properties of QGP.

QGP is transparent to the emitted electromagnetic radiation because its 
absorption coefficient  is suppressed by α2. 

Spacing between the Landau levels ~ eB/ε, while their thermal width ~ T. 
When eB/ε≳T it is essential to account for quantization of fermion spectra. 

ANGULAR DISTRIBUTION OF RADIATION

Synchrotron radiation:
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"j =
q

m2 + p2 + 2jefB , "k =
q

m2 + q2 + 2kefB

"j = ! + "k , p = q + ! cos ✓

dIj

d!d⌦
=
X

f

z2
f↵

⇡
!2

jX

k=0

�jk

�
|M?|2 + |Mk|2

 
�(! � "j + "k)

j (k) is the quantum number of Landau orbit of initial (final) charged fermion.

p (q) is the projection of initial (final) fermion momentum on the direction of B

Magnetic filed does no work, thus energy is conserved. Magnetic Lorentz force 
has no component along the B-direction:

Angular distribution of the power spectrum:

B θ

KINEMATICS
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4"j"k|M?|2 =("j"k � pq �m2
)[I2

j,k�1 + I2
j�1,k] + 2

p
2jefB

p
2kefB[Ij,k�1Ij�1,k] .

4"j"k|Mk|2 = cos

2 ✓
�
("j"k � pq �m2

)[I2
j,k�1 + I2

j�1,k]� 2

p
2jefB

p
2kefB[Ij,k�1Ij�1,k]

 

� 2 cos ✓ sin ✓
�
p
p

2kefB[Ij�1,kIj�1,k�1 + Ij,k�1Ij,k]

+ q
p

2jefB[Ij,kIj�1,k + Ij�1,k�1Ij,k�1]
 

+ sin

2 ✓
�
("j"k + pq �m2

)[I2
j�1,k�1 + I2

j,k] + 2

p
2jefB

p
2kefB(Ij�1,k�1Ij,k)

 

Ij,k ⌘ Ij,k(x) = (�1)j�k

s
k!
j!

e

�x

2
x

j�k

2
L

j�k
k (x).

x =
!

2

2efB

sin2
✓

Matrix elements for synchrotron transitions corresponding to photon polarization 
perpendicular and parallel to B Sokolov, Ternov (1968) and others

Laguerre polynomials
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dIj

d⌦

=

X

f

z2
f↵

⇡

jX

k=0

!⇤
("j � !⇤

)

"j � p cos ✓ � !⇤
sin

2 ✓
�jk

�
|M?|2 + |Mk|2

 

!⇤
=

1

sin

2 ✓

n

("j � p cos ✓)�
⇥

("j � p cos ✓)2 � 2efB(j � k) sin

2 ✓
⇤1/2

o

ANGULAR DISTRIBUTION OF RADIATION

Integrate over photon energies ω keeping in mind that εk is a function of ω. 

where the photon energy is fixed by the delta-function as
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PHOTON NUMBER SPECTRUM

dN synch

dtd⌦d!
=

X

f

Z 1

�1
dp

efB(2Nc)V
2⇡2

1X

j=0

jX

k=0

dIj

!d!d⌦
(2� �j,0)f("j)[1� f("k)]

f(") =
1

e"/T + 1

We are interested in the photon number spectrum radiated from QGP

�(! � "j + "k) =
X

±

�(p� p⇤±)�� p
"j
� q

"k

��

To take integral over p write

p⇤± =

⇢
cos ✓(m2

j �m2
k + !2

sin

2 ✓)

±
q

[(mj + mk)
2 � !2

sin

2 ✓][(mj �mk)
2 � !2

sin

2 ✓]

�
/(2! sin

2 ✓)

m2
j = m2 + 2jefB , m2

k = m2 + 2kefB
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(i) mj �mk � ! sin ✓ , or (ii) mj + mk  ! sin ✓

dN synch

V dtd⌦d!
=
X

f

2Ncz2
f↵

⇡3
efB

1X

j=0

jX

k=0

!(1 + �k0) #(!s,ij � !)
Z

dp
X

±

�(p� p⇤±)�� p
"j
� q

"k

��

⇥
�
|M?|2 + |Mk|2

 
f("j)[1� f("k)] ,

p± is real in two cases:

synchrotron radiation one-photon pair 
annihilation

In case (i) the j → k transition must satisfy

!  !s,jk ⌘
mj �mk

sin ✓
=

p
m2 + 2jefB �

p
m2 + 2kefB

sin ✓

in particular j=k transition is forbidden.

Spectral distribution of the synchrotron radiation rate per unit volume:
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B θ

A A

Transve
rse plane

x

z

x

y

kkT

ϕ π-α

k = !(sin↵ cos �ˆ

x + sin↵ sin �ˆ

y + cos ↵ˆ

z)

HIGH-ENERGY REFERENCE FRAME

ˆk · ˆy = cos ✓

cos ✓ = sin↵ sin �

⇒

Thus, azimuthal dependence (ϕ) of 
the spectrum is an artifact of the 

frame choice! 
k? =

q
k2

x

+ k2
y

=

! cos ✓

sin �
, y = � ln tan

↵

2

dN synch

dV dt d2k?dy
= !

dN synch

dV dt d3k
=

dN synch

dV dt !d!d⌦
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6

The natural variables to study the synchrotron radiation are the photon energy ! and its emis-

sion angle ✓ with respect to the magnetic field. However, in high energy physics particle spectra are

traditionally presented in terms of rapidity y (which for photons is equivalent to pseudo-rapidity)

and transverse momentum k?. k? is a projection of three-momentum k onto the transverse plane.

These variables are not convenient to study electromagnetic processes in external magnetic field.

In particular, they conceal the azimuthal symmetry with respect to the magnetic field direction.

To change variables, let z be the collision axis and ŷ be the direction of the magnetic field. In

spherical coordinates photon momentum is given by k = !(sin↵ cos �x̂ + sin↵ sin �ŷ + cos ↵ẑ),

where ↵ and � are the polar and azimuthal angles with respect to z-axis. The plane xz is the

reaction plane. By definition, k̂ · ŷ = cos ✓ implying that cos ✓ = sin↵ sin �. Thus,

k? =
q

k

2

x

+ k

2

y

=
! cos ✓

sin �

, y = � ln tan
↵

2
. (19)

The second of these equations is the definition of (pseudo)-rapidity. Inverting (19) yields

! = k? cosh y , cos ✓ =
sin �

cosh y

. (20)

Because dy = dk

z

/! the photon multiplicity in a unit volume per unit time reads

dN

synch

dV dt d

2

k?dy

= !

dN

synch

dV dt d

3

k

=
dN

synch

dV dt !d!d⌦
(21)
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(a) (b)

FIG. 1: Spectrum of synchrotron radiation by u quarks at eB = m

2

⇡, y = 0, � = ⇡/3: (a) contribution of

10 lowest Landau levels j  10; several cuto↵ frequencies are indicated; (b) summed over all Landau levels.

mu = 3 MeV, T = 200 MeV.

Fig. 1 displays the spectrum of synchrotron radiation by u quarks as a function of k? at fixed

�. At midrapidity y = 0 (20) implies that k? = !. Contribution of d and s quarks is qualitatively

similar. At eB � m

2, quark masses do not a↵ect the spectrum much. The main di↵erence

SYNCHROTRON SPECTRUM
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ANGULAR DISTRIBUTION OF SR

7

stems from the di↵erence in electric charge. In panel (a) only the contributions of the first ten

Landau levels are displayed. The cuto↵ frequencies !

s,jk

can be clearly seen and some of them are

indicated on the plot for convenience. The azimuthal distribution is shown in Fig. 2. Note, that at

midrapidity � = ⇡/2 � ✓. Therefore, the figure indicates that photon production in the direction

of magnetic field (at � = ⇡/2) is suppressed. More photons are produced in the direction of the

reaction plane � = 0. This results in the ellipticity of the photon spectrum that translates into the

positive “elliptic flow” coe�cient v

2

. It should be noted, that the classical synchrotron radiation

has a similar angular distribution.
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FIG. 2: Azimuthal distribution of synchrotron radiation by u-quarks at k? = 0.2 GeV, eB = m

2

⇡, y = 0.

mu = 3 MeV.

In order to compare the photon spectrum produced by synchrotron radiation to the photon

spectrum measured in heavy-ion collisions, the u, d and s quarks contributions were summed up.

Furthermore, the experimental data from [39] was divided by V t, where t is the magnetic field

relaxation time. The volume of the plasma can be estimated as V = ⇡R

2

t with R ⇡ 5 fm being

the nuclear radius. Therefore,

dN

�

exp

dV dt d

2

k?dy

=
dN

�

exp

d

2

k?dy

1
⇡R

2

t

2

=
dN

�

exp

d

2

k?dy

✓

GeV
14.9

◆

4

✓

1 fm
t

◆

2

. (22)

The results are plotted in Fig. 3. In panel (a) it is seen that synchrotron radiation gives a significant

contribution to the photon production in heavy-ion collisions at RHIC energy. This contribution is

larger at small transverse momenta. This may explain enhancement of photon production observed

in [39]. Panel (b) indicates the increase of the photon spectrum produced by the synchrotron

radiation mechanism at the LHC energy. This increase is due to enhancement of the magnetic field

strength, but mostly because of increase of plasma temperature. This qualitative features can be

better understood by considering the limiting cases of low and high photon energies.

This distribution implies that v2>0 (to be calculated)

||B⊥B

Reaction plane
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FIG. 3: Azimuthal average of the synchrotron radiation spectrum of u,d,s quarks and their corresponding

antiquarks. (a) eB = m

2

⇡, y = 0 compared to the experimental data from [39] divided by V t = 25⇡ fm4

(dots) and V t = 9⇥25⇡ fm4 (stars), (b) eB = m

2

⇡, T = 200 MeV, y = 0 (solid line) compared to eB = 15m

2

⇡,

T = 400 MeV, y = 0 (dashed line). mu = 3 MeV, md = 5 MeV, ms = 92 MeV.

A. Low photon energy

The low energy part of the photon spectrum satisfies the condition ! ⌧ p

e

f

B. The corre-

sponding initial quark momentum component along the field p and energy "

j

follow from (14) and

(2) and are given by

p

⇤
± ⇡

(j � k)e
f

B(cos ✓ ± 1)
! sin2

✓

+O(!) , "

j

⇡ |p⇤±|+O(!) . (23)

Evidently, "

j

� eB. In practice, the magnetic field strength satisfies
p

eB & T , so that "

j

� T .

Therefore, synchrotron radiation is dominated by fermion transitions from low Landau levels due

to the statistical factors appearing in (11).

For a qualitative discussion it is su�cient to consider the 1 ! 0 transition. In this case the

matrix elements (5) and (6) read

|M1,0|2 =
1

2"

1

"

0

n

I

2

1,0

("
1

"

0

� pq cos2 ✓ �m

2) + cos ✓ sin ✓q

p

2e

f

BI

1,0

I

0,0

o

. (24)

Assuming that the field strength is supercritical, i.e. e

f

B � m

2, but keeping all powers of ! (for

future reference) (14) reduces to

p

⇤
± ⇡

1
2! sin2

✓

�

2e

f

B(cos ✓ ± 1) + !

2 sin2

✓(cos ✓ ⌥ 1)
 

. (25)
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TABLE I: The upper summation limit in (18) that yields the 5% accuracy. j

max

is the highest Landau level

of the initial quark that is taken into account at this accuracy. Throughout the table y = 0.

provided that ! � m

p

mT/e

f

B sin ✓. Here n

f

is number density of flavor f , which is independent

of B:

n

f

=
2 · 2N

c

e

f

B

4⇡

2

1
X

j=0

Z 1

�1
dp e

�"

j

/T ⇡ 4N

c

⇡

2

T

3
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Here summation over j was replaced by integration. It follows that this part of the spectrum

increases with magnetic field strength as
p

B and and with temperature as
p

Te

�!/T . Therefore,

variation of the spectrum with T is much stronger than with B. The T dependence is shown in

Fig. 4.
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FIG. 4: Variation of the synchrotron spectrum with plasma temperature. Lower line: T = 200 MeV, upper

line: T = 250 MeV. Other parameters are the same as in Fig. 3(a).

III. PAIR ANNIHILATION

The theory of one-photon pair annihilation was developed in [46, 47]. It was shown in [48] that

in the super-critical regime eB � m

2 one-photon annihilations is much larger than the two-photon
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FIG. 4: Variation of the synchrotron spectrum with plasma temperature. Lower line: T = 200 MeV, upper

line: T = 250 MeV. Other parameters are the same as in Fig. 3(a).

III. PAIR ANNIHILATION

The theory of one-photon pair annihilation was developed in [46, 47]. It was shown in [48] that

in the super-critical regime eB � m

2 one-photon annihilations is much larger than the two-photon

dN synch

dtd⌦d!
=

X

f

Z 1

�1
dp

efB(2Nc)V
2⇡2

j
maxX

j=0

jX

k=0

dIj

!d!d⌦
(2� �j,0)f("j)[1� f("k)]

HOW MANY LANDAU LEVELS CONTRIBUTE?

Large j,k correspond to quasi-classical limit.
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HIGH PHOTON ENERGY APPROXIMATION

dN synch

V dtd⌦d!
=

X

f

z2
f↵

⇡

nf!m2

4T 3

r
efBT sin ✓

m3
e�!/T

! � m
q

mT/efB sin ✓

nf =
2 · 2Nc efB

4⇡2

1X

j=0

Z 1

�1
dp e�"j/T ⇡ 4Nc

⇡2
T 3Quark number density/T3 is T-independent

This part of the spectrum increases with magnetic field strength as B1/2 and and with 
temperature as T1/2eω/T. Therefore, variation of the spectrum with T is much stronger 
than with B.

☞

Photon spectrum in HIC satisfies this condition, except very close to the B-direction 
(θ≈0). Fortunately it contributes little to the average, but causes numerical trouble 
when calculating harmonics.
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variation of the spectrum with T is much stronger than with B. The T dependence is shown in
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FIG. 4: Variation of the synchrotron spectrum with plasma temperature. Lower line: T = 200 MeV, upper

line: T = 250 MeV. Other parameters are the same as in Fig. 3(a).

III. PAIR ANNIHILATION

The theory of one-photon pair annihilation was developed in [46, 47]. It was shown in [48] that

in the super-critical regime eB � m

2 one-photon annihilations is much larger than the two-photon

Photon spectrum is very sensitive to the QGP temperature in the first 1-2 fm of its 
existence.



41

PAIR ANNIHILATION

γ
f

anti-f

One and two-photon annihilation: At eB≫m2 one-photon annihilation dominates.

One-photon annihilation is a cross-channel of synchrotron radiation. The 
corresponding matrix elements are straightforward to calculate.

dNannih

V dtd!d⌦

=

X

f

↵z2
f!Nc

4⇡efB

1X

j=0

1X

k=0

Z
dp

2efB

2⇡2
f("j)

Z
dq

2efB

2⇡2
f("k)

⇥�(p + q � ! cos ✓)�("j + "k � !){|T?|2 + |Tk|2}
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PAIR ANNIHILATION SPECTRUM
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Pair annihilation is numerically much smaller than synchrotron radiation.  
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FIG. 5: Photon spectrum in one-photon annihilation of u and ū quarks. eB = m

2

⇡, y = 0. (a) k?-spectrum

at � = ⇡/3, (b) azimuthal angule distribution at k? = 1 GeV.

IV. CONCLUSIONS

Results of the calculations performed in this article indicate that photon production by QGP due

to its interaction with external magnetic field give a considerable contribution to the total photon

multiplicity in heavy-ion collisions. This is seen in Fig. 3 were the model calculation is compared

with the experimental data [39]. The two processes were considered: synchrotron radiation and pair

annihilation. In the kinematic region relevant for the current high energy heavy-ion experiments,

contribution of the synchrotron radiation is about two orders of magnitude larger than that of pair

annihilation. The largest contribution to the photon multiplicity arises from photon momenta of

the order of
p

eB. This may provide an explanation of the photon excess observed by the PHENIX

experiment [39]. Similar mechanism is also responsible for enhancement of low mass di-lepton

production that proceeds via emission of virtual photon which subsequently decays into di-lepton

pair.

One possible way to ascertain the contribution of electromagnetic radiation in external magnetic

field is to isolate the azimuthally symmetric component with respect to the direction of the magnetic

field. It seems that synchrotron radiation dominates the photon spectrum at low k?. Thus,

azimuthal symmetry can be easily checked by simply plotting the multiplicity vs !, ✓ and ', where

! is photon energy, ✓ is emission angle with respect to the magnetic field and ' is azimuthal angle

around the magnetic field direction (which is perpendicular both to the collision axis and to the

impact parameter). In Fig. 1(a) it is also seen that in these variables it may be possible to discern

the cuto↵ frequencies !

s,jk

that appear as resonances (in Fig. 1 y = 0 so k? = !). Note that

averaging over the azimuthal angle ↵ around the collision axis direction distroys these features, see
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CONCLUSIONS II

Photon production by QGP due to its interaction with external magnetic field give a 
considerable contribution to the total photon multiplicity in heavy-ion collisions. 

The two processes were considered: synchrotron radiation and pair annihilation. In the 
kinematic region relevant for the current high energy heavy-ion experiments,  contribution of 
the synchrotron radiation is about two orders of magnitude larger than that of pair 
annihilation.

One possible way to ascertain the contribution of electromagnetic radiation in external 
magnetic field is to isolate the azimuthally symmetric component with respect to the 
direction of the magnetic field by rotating the reference frame, so that z-axis coincides with 
B-direction.
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Figure 3: RAA in central (0–5%) and peripheral (70–80%) Pb–Pb collisions at √sNN = 2.76 TeV. Error bars
indicate the statistical uncertainties. The boxes contain the systematic errors in the data and the pT dependent
systematic errors on the pp reference, added in quadrature. The histograms indicate, for central collisions only,
the result for RAA at pT > 6.5 GeV/c using alternative pp references obtained by the use of the p p measurement
at √sNN = 1.96 TeV [26] in the interpolation procedure (solid) and by applying NLO scaling to the pp data at 0.9
TeV (dashed) (see text). The vertical bars around RAA = 1 show the pT independent uncertainty on 〈Ncoll〉.
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Figure 4: Comparison of RAA in central Pb–Pb collisions at LHC to measurements at √sNN = 200 GeV by the
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ITS-TPC and TPC stand-alone tracking are in excellent
agreement. Because of the smaller corrections for the
azimuthal acceptance, the results obtained using the TPC
stand-alone tracks are presented in this Letter.

The pt-differential flow was measured for different
event centralities using various analysis techniques. In
this Letter we report results obtained with 2- and 4-particle
cumulant methods [34], denoted v2f2g and v2f4g. To cal-
culate multiparticle cumulants we used a new fast and
exact implementation [35]. The v2f2g and v2f4g measure-
ments have different sensitivity to flow fluctuations and
nonflow effects—which are uncorrelated to the initial ge-
ometry. Analytical estimates and results of simulations
show that nonflow contributions to v2f4g are negligible
[36]. The contribution from flow fluctuations is positive
for v2f2g and negative for v2f4g [37]. For the integrated
elliptic flow we also fit the flow vector distribution [38] and
use the Lee-Yang zeros method [39], which we denote by
v2fq-distg and v2fLYZg, respectively [40]. In addition to
comparing the 2- and 4-particle cumulant results we also
estimate the nonflow contribution by comparing to corre-
lations of particles of the same charge. Charge correlations
due to processes contributing to nonflow (weak decays,
correlations due to jets, etc.) lead to stronger correlations
between particles of unlike charge sign than like charge
sign.

Figure 2(a) shows v2ðptÞ for the centrality class 40%–
50% obtained with different methods. For comparison, we
present STAR measurements [41,42] for the same central-
ity from Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, indicated
by the shaded area. We find that the value of v2ðptÞ does
not change within uncertainties from

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV to
2.76 TeV. Figure 2(b) presents v2ðptÞ obtained with the 4-
particle cumulant method for three different centralities,
compared to STAR measurements. The transverse momen-
tum dependence is qualitatively similar for all three cen-
trality classes. At low pt there is agreement of v2ðptÞ with
STAR data within uncertainties.

The integrated elliptic flow is calculated for each cen-
trality class using the measured v2ðptÞ together with the
charged particle pt-differential yield. For the determina-
tion of integrated elliptic flow the magnitude of the charged
particle reconstruction efficiency does not play a role.
However, the relative change in efficiency as a function
of transverse momentum does matter. We have estimated
the correction to the integrated elliptic flow based on
HIJING and THERMINATOR simulations. Transverse momen-
tum spectra in HIJING and THERMINATOR are different,
giving an estimate of the uncertainty in the correction.
The correction is about 2% with an uncertainty of 1%. In
addition, the uncertainty due to the centrality determina-
tion results in a relative uncertainty of about 3% on the
value of the elliptic flow.

Figure 3 shows that the integrated elliptic flow increases
from central to peripheral collisions and reaches a

maximum value in the 50%–60% and 40%–50% centrality
class of 0:106$ 0:001ðstatÞ $ 0:004ðsystÞ and 0:087$
0:002ðstatÞ $ 0:003ðsystÞ for the 2- and 4-particle cumu-
lant method, respectively. It is also seen that the measured
integrated elliptic flow from the 4-particle cumulant, from
fits of the flow vector distribution, and from the Lee-Yang
zeros method, are in agreement. The open markers in Fig. 3
show the results obtained for the cumulants using particles
of the same charge. The 4-particle cumulant results agree
within uncertainties for all charged particles and for the
same charge particle data sets. The 2-particle cumulant
results, as expected due to nonflow, depend weakly on
the charge combination. The difference is most pro-
nounced for the most peripheral and central events.
The integrated elliptic flow measured in the 20%–30%

centrality class is compared to results from lower energies
in Fig. 4. For the comparison we have corrected the inte-
grated elliptic flow for the pt cutoff of 0:2 GeV=c. The
estimated magnitude of this correction is ð12$ 5Þ% based
on calculations with THERMINATOR. The figure shows that
there is a continuous increase in the magnitude of the
elliptic flow for this centrality region from RHIC to LHC
energies. In comparison to the elliptic flow measurements
in Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, we observe
about a 30% increase in the magnitude of v2 at

ffiffiffiffiffiffiffiffi
sNN

p ¼
2:76 TeV. The increase of about 30% is larger than in
current ideal hydrodynamic calculations at LHC multiplic-
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FIG. 2 (color online). (a) v2ðptÞ for the centrality bin 40%–
50% from the 2- and 4-particle cumulant methods for this
measurement and for Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.
(b) v2f4gðptÞ for various centralities compared to STAR mea-
surements. The data points in the 20%–30% centrality bin are
shifted in pt for visibility.
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ENERGY LOSS AND AZIMUTHAL ANISOTROPY

44

Synchrotron radiation contributes to quark anergy loss and azimuthal asymmetry. 
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• General formulas for synchrotron radiation simplify if quark is ultra-relativistic ε>>m before 
and after gluon radiation.

This always holds in week fields eB≪m2

In strong fields eB≫m2 this approximation breaks down at the threshold ω~ε, i.e. gluon 
carries away almost all quark energy ⇒ energy loss in this approximation must satisfy 
Δε≪ε

• Synchrotron radiation is quasi-classical if

2. Recoil due to gluon emission is small: ω≪ε (i.e. far from the threshold)

1.Spacing between Landau levels eB/ε is much smaller than ε =>ε2≫eB
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Strong fields

Weak fields
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Azimuthal asymmetry:
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POLARIZATION OF LIGHT QUARKS
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A =
8
p

3
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⌧
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n" � n#
n" + n#

• Let n(↑)/n(↓) be the number of fermions with given momentum and spin 
direction parallel /anti-parallel to the field in a given event. 

• Immediately after the collision at t0  A=0, however at t>t0 

Spin-asymmetry:
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For muon with pT=1 GeV, η=φ=0 ⇒ τ~0.004 fm = 0 on the relevant scale

SPIN-ASYMMETRY

A =
8

5
p

3
= 92% A very strong polarization 

of quarks and leptons
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BEYOND THE QUASI-CLASSICAL APPROXIMATION 

Quark looses almost all its energy due to synchrotron radiation and falls on one of the lowest 
Landau levels.

• Transition to the ground state occurs with probability

wn0 =
↵s

2
m2

"

B

Bc
e�Bc/B Sokolov, Borisov, Zhukovskii 

(1975)

• In heavy-ion collisions B is stronger than Bc, so such transitions must be taken into account.
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• In strong fields B≫e/m2 near the threshold ω=ε:

This brakes both the quasi-classical and ultra-relativistic approximation. 

where Bc=e/m2

☞ Future project.
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CONCLUSIONS III

Synchrotron radiation of gluons contributes to the quark 
energy loss and is azimuthally asymmetric. 

Polarization of leptons escaping the QGP is a very good 
probe of the QED in magnetic field. 



Dilepton production
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Figure 2: Mass distributions of e+e− pair in p + p (filled) and Au+Au (open). The left panel show the inclusive mass
spectra (0 < pT < 8 GeV/c) and the right panel shows the mass spectrum at the low pT region (0 < pT < 0.7) GeV/c.

The right panel of Fig. 1 shows the same calculations presented as the yield of virtual pho-
ton. The steep 1/M behavior of the electron pair spectrum is removed, and much more smooth
behavior of the virtual photon spectrum is revealed. The plot shows that the virtual photon yield
is almost constant as a function of M. The value of the solid curve at M = 0 should correspond
to the real photon yield. This illustrates that in a consistent theory calculation the yield of virtual
photon is a smooth function of M and it becomes the real photon yield in the limit of M = 0.

The quark annihilation contribution, shown as dotted curve, behaves as ∝ M2 in the right
panel at low mass region since q  q contribution to ΠEM is proportional to M2. Thus it is strongly
suppressed and have little contribution in the low mass region. In the high mass region, the M2

behavior of the quark annihilation is suppressed by the Boltzmann factor.
It should be noted that the dotted curve does not include processes like q + g → q + γ∗ that

are associated with real direct photon production in QGP. This is because HTL calculation of
thermal radiation from QGP is only available in the real photon case. Turbide, Gale, and Rapp
[6] calculated real photon production in an hadronic gas using the same model and compared
it with real photon production in QGP phase using the complete leading order HTL analysis.
They found that real photon from the QGP outshines that of hadronic gas for pT > 1.5 GeV/c
in Au+Au collisions at RHIC. This means that contribution from processes associated with real
photon production in QGP can be as large as that of HMT (solid curve) and can be much larger
than that of the LO q  q annihilation (dotted).

3. e+e− mass spectra in p + p and Au+Au

PHENIX measured the e+e− pair production in Au+Au and in p+ p at √sNN=200 GeV[7, 8].
In p + p the measured mass spectrum in low mass (M < 1 GeV/c2) is well described by the sum
of light hadron decay contributions. The high-mass region is dominated by the contribution of
the correlated decays of charm and bottom. From the measured mass spectrum the charm cross
section is determined as σc c = 544 ± 39 ± 142µb, which is consistent with that obtained from
single electron measurement[9]. The bottom cross section is determined as σb  b = 3.9± 2.5+3

−2µb,
which is consistent with that obtained from e − h correlation[10].

Figure 2 compares the e+e− pair mass distributions in p + p and Au + Au collisions and
hadronic cocktail for M < 1.2 GeV/c2. The p + p and Au+Au data are normalized in Dalitz pair

3

PHENIX (Y. Akiba)
arXiv:0907.4794 [nucl-ex]



PHOTON DECAY
Photon decay is another cross-channel of the synchrotron radiation
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PHOTON DECAY RATE
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Figure 2: Mass distributions of e+e− pair in p + p (filled) and Au+Au (open). The left panel show the inclusive mass
spectra (0 < pT < 8 GeV/c) and the right panel shows the mass spectrum at the low pT region (0 < pT < 0.7) GeV/c.

The right panel of Fig. 1 shows the same calculations presented as the yield of virtual pho-
ton. The steep 1/M behavior of the electron pair spectrum is removed, and much more smooth
behavior of the virtual photon spectrum is revealed. The plot shows that the virtual photon yield
is almost constant as a function of M. The value of the solid curve at M = 0 should correspond
to the real photon yield. This illustrates that in a consistent theory calculation the yield of virtual
photon is a smooth function of M and it becomes the real photon yield in the limit of M = 0.

The quark annihilation contribution, shown as dotted curve, behaves as ∝ M2 in the right
panel at low mass region since q  q contribution to ΠEM is proportional to M2. Thus it is strongly
suppressed and have little contribution in the low mass region. In the high mass region, the M2

behavior of the quark annihilation is suppressed by the Boltzmann factor.
It should be noted that the dotted curve does not include processes like q + g → q + γ∗ that

are associated with real direct photon production in QGP. This is because HTL calculation of
thermal radiation from QGP is only available in the real photon case. Turbide, Gale, and Rapp
[6] calculated real photon production in an hadronic gas using the same model and compared
it with real photon production in QGP phase using the complete leading order HTL analysis.
They found that real photon from the QGP outshines that of hadronic gas for pT > 1.5 GeV/c
in Au+Au collisions at RHIC. This means that contribution from processes associated with real
photon production in QGP can be as large as that of HMT (solid curve) and can be much larger
than that of the LO q  q annihilation (dotted).

3. e+e− mass spectra in p + p and Au+Au

PHENIX measured the e+e− pair production in Au+Au and in p+ p at √sNN=200 GeV[7, 8].
In p + p the measured mass spectrum in low mass (M < 1 GeV/c2) is well described by the sum
of light hadron decay contributions. The high-mass region is dominated by the contribution of
the correlated decays of charm and bottom. From the measured mass spectrum the charm cross
section is determined as σc c = 544 ± 39 ± 142µb, which is consistent with that obtained from
single electron measurement[9]. The bottom cross section is determined as σb  b = 3.9± 2.5+3

−2µb,
which is consistent with that obtained from e − h correlation[10].

Figure 2 compares the e+e− pair mass distributions in p + p and Au + Au collisions and
hadronic cocktail for M < 1.2 GeV/c2. The p + p and Au+Au data are normalized in Dalitz pair

3

PHENIX (Y. Akiba)
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AZIMUTHAL ASYMMETRY
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FIG. 1: (Color online) (a,b,c) v2 in minimum bias collisions,
using two different reaction plane detectors: (solid black cir-
cles) BBC and (solid red squares) RXN for (a) π0, (b) inclu-
sive photon, and (c) direct photon. (d) direct photon fraction
Rγ for (solid black circles) virtual photons [5] and (open blue
squares) real photons [8] and (e) ratio of direct photon to π0

v2 for (solid black circles) BBC and (solid red squares) RXN.
The vertical error bars on each data point indicate statistical
uncertainties and shaded (gray and cyan) and hatched (red)
areas around the data points indicate sizes of systematic un-
certainties.

inclusive photon v2 measurements are largely immune to
energy scale uncertainties which are typically the domi-
nant source of uncertainty in an absolute (invariant yield)
measurement. The uncertainties on v2 are dominated by
the common uncertainty on determining σRP and by un-
certainties on particle identification. Uncertainties from
absolute yields enter indirectly via the hadron cocktail
(normalization) and more directly at higher pT (where
the real photon measurement is used) by the Rγ(pT )
needed to establish the direct photon v2. Note that due
to the way vγ,dir2 is calculated, once Rγ is large, its rela-

tive error contributes to the error on vγ,dir2 less and less.
Figure 1 shows steps of the analysis using the mini-

mum bias sample, as well as the differences between re-
sults obtained with BBC and RXN. The first v2 of π0 and
inclusive photons (vπ

0

2 ,vγ,inc2 ) are measured, as described

above (panels (a) and (b)). Then, using the vγ,bg2 of pho-
tons from hadronic decays and the Rγ direct photon ex-

cess ratio, we derive the vγ,dir2 of direct photons (panel
(c)). Panel (d) shows the Rγ(pT ) values from the di-
rect photon invariant yield measurements using internal
conversion [5] and real [8] photons, with their respective

uncertainties. Panel (e) shows the ratio of vγ,dir2 /vπ
0

2 .
We observe substantial direct photon flow in the low pT

region (c), commensurate with the hadron flow itself (e).
However, in contrast to hadrons, the direct photon v2
rapidly decreases with pT ; and starting with 5 GeV/c
and above, it is consistent with zero (c). The rapid tran-
sition from high direct photon flow at 3 GeV/c to zero
flow at 5 GeV/c is also demonstrated on panel (e), since
the π0 v2 changes little in this region [4].
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FIG. 2: (Color online) (a,c,e) Centrality dependence of v2
for (solid black circles) π0, (solid red squares) inclusive pho-
tons, and (b,d,f) (solid black circles) direct photons measured
with the BBC detector for (a,b) minimum bias (c,d) 0-20%
centrality, and (e,f) 20-40% centrality. For (b,d,f) the direct
photon fraction is taken from [5] up to 4 GeV/c and from [8]
for higher pT . The vertical error bars on each data point
indicate statistical uncertainties and the shaded (gray) and
hatched (red) areas around the data points indicate sizes of
systematic uncertainties.

A major issue in any azimuthal asymmetry measure-
ment is the potential bias from where in pseudorapidity
the (event-by-event) reaction plane is measured. At low
pT – where multiplicities are high and particle production
is dominated by the bulk with genuine hydrodynamic be-
havior – there is no difference between the flow derived
with BBC and RXN. However, at higher pT we observe
that the v2 values using BBC and RXN diverge, particu-
larly for π0 (panel (a) in Fig. 1), less for inclusive photons.
For direct photons (panel (c)) the two results are appar-
ently consistent within their total errors, including the

arXiv:1105.4126 [nucl-ex]
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CONCLUSIONS IV

Dileptons produced in magnetic field significantly contribute 
to the overall dilepton rate. 

More theoretical work is needed to calculate 
q ! q + � ! q + `+ + `�

(in progress)



SUMMARY

• Magnetic field in relativistic heavy-ion collisions 
exceeds the critical value at least for a short interval of 
time.

• Back-reaction of the medium in which the magnetic 
field decays significantly inhibits its decay.

• Strong magnetic field can trigger a lot of new 
phenomena; some have never been observed before.

• Abundance of possible effects calls for a 
detailed experimental investigation. 
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